10.1=0.1825x^2+1.4254x

Simple and best practice solution for 10.1=0.1825x^2+1.4254x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10.1=0.1825x^2+1.4254x equation:


Simplifying
10.1 = 0.1825x2 + 1.4254x

Reorder the terms:
10.1 = 1.4254x + 0.1825x2

Solving
10.1 = 1.4254x + 0.1825x2

Solving for variable 'x'.

Reorder the terms:
10.1 + -1.4254x + -0.1825x2 = 1.4254x + -1.4254x + 0.1825x2 + -0.1825x2

Combine like terms: 1.4254x + -1.4254x = 0.0000
10.1 + -1.4254x + -0.1825x2 = 0.0000 + 0.1825x2 + -0.1825x2
10.1 + -1.4254x + -0.1825x2 = 0.1825x2 + -0.1825x2

Combine like terms: 0.1825x2 + -0.1825x2 = 0.0000
10.1 + -1.4254x + -0.1825x2 = 0.0000

Begin completing the square.  Divide all terms by
-0.1825 the coefficient of the squared term: 

Divide each side by '-0.1825'.
-55.34246575 + 7.810410959x + x2 = 0

Move the constant term to the right:

Add '55.34246575' to each side of the equation.
-55.34246575 + 7.810410959x + 55.34246575 + x2 = 0 + 55.34246575

Reorder the terms:
-55.34246575 + 55.34246575 + 7.810410959x + x2 = 0 + 55.34246575

Combine like terms: -55.34246575 + 55.34246575 = 0.00000000
0.00000000 + 7.810410959x + x2 = 0 + 55.34246575
7.810410959x + x2 = 0 + 55.34246575

Combine like terms: 0 + 55.34246575 = 55.34246575
7.810410959x + x2 = 55.34246575

The x term is 7.810410959x.  Take half its coefficient (3.90520548).
Square it (15.25062984) and add it to both sides.

Add '15.25062984' to each side of the equation.
7.810410959x + 15.25062984 + x2 = 55.34246575 + 15.25062984

Reorder the terms:
15.25062984 + 7.810410959x + x2 = 55.34246575 + 15.25062984

Combine like terms: 55.34246575 + 15.25062984 = 70.59309559
15.25062984 + 7.810410959x + x2 = 70.59309559

Factor a perfect square on the left side:
(x + 3.90520548)(x + 3.90520548) = 70.59309559

Calculate the square root of the right side: 8.401969745

Break this problem into two subproblems by setting 
(x + 3.90520548) equal to 8.401969745 and -8.401969745.

Subproblem 1

x + 3.90520548 = 8.401969745 Simplifying x + 3.90520548 = 8.401969745 Reorder the terms: 3.90520548 + x = 8.401969745 Solving 3.90520548 + x = 8.401969745 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3.90520548' to each side of the equation. 3.90520548 + -3.90520548 + x = 8.401969745 + -3.90520548 Combine like terms: 3.90520548 + -3.90520548 = 0.00000000 0.00000000 + x = 8.401969745 + -3.90520548 x = 8.401969745 + -3.90520548 Combine like terms: 8.401969745 + -3.90520548 = 4.496764265 x = 4.496764265 Simplifying x = 4.496764265

Subproblem 2

x + 3.90520548 = -8.401969745 Simplifying x + 3.90520548 = -8.401969745 Reorder the terms: 3.90520548 + x = -8.401969745 Solving 3.90520548 + x = -8.401969745 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3.90520548' to each side of the equation. 3.90520548 + -3.90520548 + x = -8.401969745 + -3.90520548 Combine like terms: 3.90520548 + -3.90520548 = 0.00000000 0.00000000 + x = -8.401969745 + -3.90520548 x = -8.401969745 + -3.90520548 Combine like terms: -8.401969745 + -3.90520548 = -12.307175225 x = -12.307175225 Simplifying x = -12.307175225

Solution

The solution to the problem is based on the solutions from the subproblems. x = {4.496764265, -12.307175225}

See similar equations:

| 4n-5=23 | | 16x^2+y^2-24y+80=0 | | 30+17= | | 12-5x=42 | | x^2-500x+22500=0 | | x^2-15/4 | | 50x^2-500x+22500=0 | | 2+42x=60x | | ln(2*x)+5=3 | | 18-2(x-1)=12 | | -50+3x+3x-y=15+2x+y | | 3x+3x-y=50 | | 15x^2-3000x+136500=0 | | 50-6x+y=15+2x+y | | 15+2x+y=0 | | 15=5e^3x | | 50-6x+y=0 | | 6x+3=21 | | 6x-3x+5=4x-2 | | [x+6]-5=7 | | x^4-8x^3+18x^2+25x-102=0 | | 2x+4=20 | | 15+22x=20+21x | | 456789=x | | 56789=87878787878787 | | 2348570785+87532098715=19591875154 | | 8740395=5347985q | | 8w=3w+6 | | 3x+44+7x-4=180 | | 40x/35x | | 2c+(3c-4)=c-4 | | 4x+30+2x+12=180 |

Equations solver categories